Биофизика. (шпаргалка к экзамену)
Парадокс разрешается при учёте нуклеационного механизма сворачивания. Пространственная организация начинается в самом начале синтеза полипептидной цепи с образования ядра сворачивания. Ядро сворачивания образуется изначально из АК имеющих небольшое число разрешённых конформаций. В процессе синтеза цепи новые АК контактируют с ядром сворачивания, которое ограничивает число разрешённых конформаций. В процессе синтеза всё новые АК вовлекаются в ядро сворачивания, увеличивая его поверхность, скорость падения энергии системы возрастает. В этом заключается котрансляционный механизм сворачивания. Образование зародыша сворачивания соответствует локальному энергетическому минимуму, а далее система стремится к глобальному энергетическому минимуму – к нативной структуре.
Также в клетке могут присутствовать ферменты, катализирующие отдельные этапы самосборки – фолдазы, а также шаперолы, белки теплового шока, способные стабилизировать структуру синтезируемого белка, формируя с ним нековалентные связи.
32.
Механизмы ферментативного катализа на примере работы сериновых протеаз.
В общем виде механизм ферментативного катализа представлен несколькими стадиями:
Сериновые протеазы катализируют процесс расщепления пептидной связи. Без участия фермента реакция идёт через промежуточное состояние тетраэдрического комплекса. Это состояние характеризуется высоким уровнем свободной энергии и для протекания реакции в отсутствии фермента необходимо преодоление высокого энергетического барьера.
Сериновые протеазы стабилизируют переходное состояние и таким образом снижают энергетический барьер.
Активный центр состоит из каталитического центра, непосредственно осуществляющего химическую трансформацию и из субстрат-связывающего центра, обеспечивающего правильное расположение субстрата в пространстве относительно каталитического центра.
Главным каталитическим центром является боковая цепь серина(195), от которой отщепляется протон, расположенным рядом остатком гистидина, при участии аспартата. Углеродный атом пептидной связи образует временную ковалентную связь с активным центром, переходя в тетраэдрическую форму. Но образующийся тетраэдрический комплекс имеет меньшую свободную энергию, так как "–" заряд карбоксильной группы втягивается в оксианионовую дыру(протоны, образующие водородные связи), а донором протона является гистидин, удобно расположенный в пространстве, благодаря неспецифической пептид-связывающей площадке, ориентирующей пептидную связь относительно активного центра. Всё это снижает неопределённость системы, уменьшает энтропию и свободную энергию системы.
В общем случае эффект действия ферментов обеспечивается эффектами:
1. сближения фермента и субстрата, что эквивалентно увеличению их концентрации.
2. ориентации участников реакции в пространстве друг относительно друга.
3. стабилизации промежуточного продукта реакции.
4. поляризации и перераспределения электронной плотности субстрата.
5. индуцированного соответствия фермента и субстрата.
33.
Конформационные изменения в белке. Их значение для работы белка.
Конформационные изменения играют большую роль в функционировании белка. Это определяется, во-первых, индуцированным соответствием пространственной структуры: Изначально фермент находится в открытом состоянии, способном присоединять субстрат, соединение с субстратом вызывает конформационные изменения фермента и субстрата. Фермент переходит в закрытую форму. В закрытой форме фермент осуществляет катализ и под действием продуктов снова меняет конформацию на открытую и отщепляет продукты реакции.