Геномные векторы
Таким образом, были клонированы три сегмента генома Synechocystis: A,B и C длиной 26-, 38-, 43-kb соответственно). Для каждого сегмента создавались свои LPS, LPA плазмиды и LPA штаммы. Попытки клонировать сегменты длиннее 50 kb оказались безуспешными.
Поэтому в другой серии экспериментов был использован метод прямой селекции (рис.13), который также был применён для количественной оценки зависимости эффективности клонирования от размера вставки. Из дикого штамма Synechocystis PCC6803 был получен мутантный штамм BUSY1001, который в гене rnhB содержит вставку гена устойчивости к спектиномицину. Данный маркер и использовался для проведения прямой селекции рекомбинантов со вставкой генома Synechocystis .
В качестве BGM вектора выступал штамм B.subtilis BEST6016, несущий последовательность pBR322, вставленная в ген proB(как и BEST7003), а также ген устойчивости к неомицину [Pr-neo], вставленный в ген yvfC (неомициновый маркер BEST6016 в данных экспериментах не использовался).
В LPA плазмидах между двумя LPS находился ген устойчивости к эритромицину, и LPA штаммы отбирали по этому маркеру. Таким образом, были созданы 4 штамма B. subtilis для клонирования сегментов, содержащих rnhB::spc, длиной от 14 до 77 kb. После трансформации препаратом генома Synechocystis BUSY1001 шёл прямой отбор рекомбинантов по их устойчивости к спектиномицину. Было показано, что эффективность клонирования понижается с увеличением размера клонируемого сегмента.
С помощью BGM вектора BEST6016 также был клонирован 120-kb фрагмент геномной ДНК мыши (Itaya et al.,2000). Клонирование фрагмента шло в несколько этапов (рис.14). Сначала в BEST6016 клонировали первый фрагмент длиной 20 kb, а затем путём трансформации и гомологичной рекомбинации к нему были добавлены несколько фрагментов, в результате чего он был удлинён до 120 kb. Все проведённые манипуляции были аналогичны описанным выше.
С помощью BGM вектора BEST7003 был клонирован ген мыши jumonji (jmj) (Kaneko et al., 2003). Данный ген имеет размер около 200 kb. Предполагалось, что с первым интроном длиной 90 kb взаимодействуют какие-то белковые факторы, благодаря чему происходит регуляция экспрессии данного гена. Чтобы проверить это, были получены фрагменты данного интрона разной длины. Для этого в вектор BEST7003 аналогично описанной процедуре ввели 110 kb фрагмент гена, включающий первые два интрона. Далее с помощью гомологичной рекомбинации была произведена серия делеций (рис.15) и были получены несколько сегментов первого интрона различной длины. Процесс введения делеций по сути является обратным процессу удлинения фрагмента.
|
Рис.14. Объединение двух фрагментов ДНК мыши длиной по 25 kb в один фрагмент длиной 50 kb. S2, S1, M1 - LPS-последовательности. BEST2257, BGM вектор BEST6016 со вставкой первого 25 kb фрагмента. neo, ген устойчивости к неомицину, Показаны следующие этапы: [1] клонирование S1и S2 в плазмиде производной pBR322 (между S1и S2 расположен гены cI); [2] вставка в BEST2257 фрагментов S1и S2 вместе с геном cI (, репрессия гена neo продуктом гена cI). Вставка происходит в результате гомологичной рекомбинация по LPS-последовательности S1 и части pBR322 последовательности; [3] замещение cI вторым 25 kb фрагментом.
Во всех вышеописанных экспериментах клонированные в геномном векторе сегменты реплицировались как часть генома B. subtilis, поэтому они проявляли высокую структурную и сегрегационную стабильность. Клонированная ДНК стабильно сохранялась в геноме даже при выращивании в неселективной среде. При этом скорость роста рекомбинантов со вставкой части генома была такой же, как и у клеток без вставки.
|