Геномные векторы
Для клонирования больших участков генома на основе генома Bacillus subtilis 168 создан геномный вектор - BGM вектор (Bacillus GenoMe вектор) (Itaya et al., 2000; Itaya et al., 2003; Kaneko et al., 2003). В отличие от плазмидных векторов, в которые нужные фрагменты ДНК вставляются путём непосредственного лигирования, введение вставки в BGM вектор происходит путём гомологичной рекомбинации. Для этого BGM вектор должен иметь последовательности гомологичные участкам ДНК, фланкирующим клонируемый фрагмент. Данные последовательности, называемые LPS (Landing Pad Sequences) (Itaya et al., 2000), приготавливаются в плазмиде pBR322 (или её производных) и вставляются в pBR322 последовательность генома B. subtilis путём трансформации и общей рекомбинации. LPS составляют 5-10% от клонируемой вставки. Они вставляются вместе с фланкируемым ими маркером, что позволяет в дальнейшем проводить отбор рекомбинантов. LPS вместе с маркером обозначены как LPA; соответственно плазмиды, с помощью которых осуществляется вставка LPA в геном (в BGM вектор), называются LPA плазмидами, а штаммы B. subtilis со вставкой LPA в геноме – LPA штаммами. Вставку клонируемого сегмента в BGM вектор производят путём трансформации соответствующего LPA штамма; клонируемый сегмент, заключённый между двумя LPS, интегрируется в хромосому путём гомологичной рекомбинации по обоим LPS.
С помощью данной методики были клонированы разнообразные фрагменты ДНК как прокариотического, так и эукариотического происхождения.
Так, было клонировано несколько фрагментов генома фотосинтетической бактерии Synechocystis (Itaya et al., 2003; рис.13). Эта бактерия была выбрана по двум причинам: известна нуклеотидная последовательность её генома и отсутствие патогенности.
В одной серии экспериментов для селекции использовался собственный маркер BGM вектора, позволяющий клонировать любой участок генома. В качестве BGM вектора выступал штамм BEST7003, несущий две вставки: 4,3-kb последовательности pBR322 в гене proB и ген устойчивости к неомицину pr-neo вставленный в ген yah. Интегрированная в хромосому последовательность pBR322 состоит из двух частей: 2.4-kb фрагмент включающий в себя ген b-лактамазы (ген устойчивости к ампициллину) и 1.9-kb фрагмент, включающий ген устойчивости к тетрациклину. ДНК клонируется между этими двумя фрагментами как показано на рис.13. Экспрессия гена neo регулируется промотором Pr фага λ, с которым способен специфично связываться репрессорный белок cI.
Рис.13.
Клонирование генома Synechocystis в геномный вектор B.subtilis(BGM).
BEST6016 и BEST7003, геномные векторы для прямой и непрямой селекции. Структура промежуточного генома показана в скобках. Х означает гомологичную рекомбинацию. Геномная последовательность pBR322 представлена жёлтым (часть, содержащая ген b-лактамазы) и синим (часть, содержащая ген устойчивости к тетрациклину) заштрихованными боксами разделёнными сайтом для клонирования. Гены резистентности обозначены заштрихованным кругом (хлорамфеникол), незаштрихованным кругом (эритромицин), заштрихованным треугольником (тетрациклин), заштрихованным ромбом (спектиномицин). Изогнутая стрелка обозначает супрессию промотора Pr продуктом гена CI. [I] означает сайт для рестриктазы I-PpoI.
В LPA плазмидах между двумя LPS находился ген cI, кодирующий репрессор CI, и ген устойчивости к спектиномицину; между тетрациклиновой частью pBR322 и правым LPS находился ген устойчивости к хлорамфениколу. LPA плазмиды были приготовлены в E. coli и затем трансформировались в BEST7003. В результате трансформанты (LPA штаммы) становились чувствительными к неомицину (репрессировался cI) и приобретали устойчивость к спектиномицину и хлорамфениколу (маркеры из LPA). Далее LPA штаммы трансформировались препаратом генома дикого штамма Synechocystis PCC6803. Вставка части генома Synechocystis замещала фрагмент cI-spcR, в результате чего дерепрессировался neo и терялся маркер устойчивости к спектиномицину. Поэтому клоны устойчивые к неомицину и чувствительные к спектиномицину несли нужную вставку.