Изучение технологии инкапсулирования в косметике
В современной косметике все больше внимания уделяется активным добавкам - компонентам, которые, будучи включенными в рецептуру в относительно небольшом количестве, могут существенно влиять на свойства готового продукта - его эффективность (например, противовоспалительные и ранозаживляющие свойства) и качество (химическую и биологическую стабильность, внешний вид, сенсорные свойства) (Кубанов А.А., 1996). В роли активных добавок могут выступать как биологически активные (витамины, незаменимые жирные кислоты, отбеливающие компоненты и т.д).; «технологически» активные соединения (консерванты, отдушки, красители, пигменты и т.д.), так и сложные смеси (например, экстракты и синергетические композиции).
К сожалению, во многих случаях, введение активных компонентов в готовую рецептуру лимитируется их химической природой: неприятным запахом, низкой растворимостью, быстрой деградацией из-за окисления, чувствительностью к УФ-излучению или воде, а также плохой переносимостью кожей при нанесении в более высоких концентрациях (Ципоркина И.В., 2002).
При нанесении на кожу активное соединение контактирует с воздухом и быстро окисляется или попадает под прямые солнечные лучи и разрушается под их действием (Sweeney T.M., Downing D.T 1997). Примерами таких сверхчувствительных соединений являются ненасыщенные жирные кислоты, витамины А (ретинол) и С (аскорбиновая кислота). Так окисляясь по месту двойных связей, ненасыщенные жирные кислоты способствуют быстрой порче продукта (его прогорканию) (Jagawa, Y., 1971). Под действием УФ-лучей витамин С утрачивает свои антиоксидантные свойства, а витамин А может вызвать сильное раздражение кожи (Arct J, 2001). .
Инкапсулирование активных компонентов, т.е. заключение их в защитную оболочку, рассматривается как перспективное решение этой проблемы. Чтобы выбрать оптимальную систему доставки, следует ориентироваться на несколько моментов (Kas H.S, 2002):
- совместимость системы инкапсулирования с физико-химическими свойствами активного компонента;
- производственные возможности и мощности;
- стоимость;
- выбор сырьевых компонентов для системы доставки;
- желаемый размер частиц.
Среди перечисленных аспектов очень важным является возможность получения систем инкапсулирования высокого качества в промышленном масштабе (Schreier, H., Boustra, J., 1999). Следующим важным моментом в технологии инкапсулирования является поиск инициатора (триггера) их высвобождения и целевой доставки активного компонента непосредственно к органу мишени. Эта проблема мало исследована. Ясно одно - в этой области нужны инновации и свежие идеи, для того чтобы в дальнейшем повысить биодоступность активных компонентов.
Сегодня наиболее перспективными «косметическими» системами доставки считаются микрочастицы (капсулы со структурой «ядро/оболочка», пористые микрочастицы и матричные частицы), липосомы и циклодекстрины. Идея использования технологии микрокапсулирования в косметическом производстве пришла из фармацевтики, в которой исследования в этой области ведутся уже более 40 лет (Kas H.S ., 1997). Примером могут служить инъекционные препараты для парентерального введения, в которых активное начало «упаковано» в капсульные частицы. В этом случае концепция «чем меньше, тем лучше» вполне оправдана, и поэтому здесь в качестве систем доставки используют обычно наночастицы размером 20-500 нм (Антонов В.Д., 1993). Размер транспортных частиц в косметике не обязательно должен быть столь малым. В смысле стабилизации чувствительных активных компонентов, большая площадь поверхности маленьких наночастиц скорее неблагоприятный, чем благоприятный фактор. Главными задачами большинства косметических систем инкапсулирования являются обеспечение медленного высвобождения активных компонентов на поверхности кожи и их химическая стабилизация, что снижает побочные эффекты и повышает срок годности продукта, а также проникновение через мембрану клетки.
Микрокапсулы представляют собой сферические системы, в которых активные компоненты располагаются в ядре. Ядро окружено одним или несколькими слоями оболочки. Основными способами приготовления систем «ядро/оболочка» являются: метод разделения фаз, пограничная полимерилизация, коацервация и нанесение покрытия (оболочки), с использованием псевдоожиженного слоя. На современном рынке представлен широкий выбор материалов для капсульных оболочек. Существуют натуральные или синтетические полимеры, такие, как коллаген, альгинат, хитозан, полимолочная кислота, поликапролактам, полиакрилаты, а также воски. (Tholon L , Branka J E, 2000).
Эффективность микрокапсул в составе готового продукта во многом зависит от их поведения в косметической базе. Материал для стенки капсулы необходимо выбирать с учетом присутствия в рецептуре других компонентов таким образом, чтобы:
- обеспечить стабильность микрокапсул в процессе производства и хранения;