Дыхательная цепь и окислительное фосфорилирование.
В то время как большинство анаэробных организмов способно синтезировать АТР только путём субстратного фосфорилирования, аэробы могут осуществлять более эффективную регенерацию АТР. Они обладают особым аппаратом: дыхательной (электрон-транспортной) цепью и АТР-синтетазой. Обе системы находятся в плазматической мембране. Ведущие своё происхождение от субстратов восстановительные эквиваленты (Н и электроны) поступают в дыхательную цепь и транспортируются к терминальному акцептору электронов таким образом, что между внутренней и внешней мембранами создаётся электрохимический градиент с положительным потенциалом снаружи и отрицательным внутри. Этот перепад заряда возникает благодаря определённому расположению компонентов дыхательной цепи в мембране. Некоторые из этих компонентов переносят электроны. Другие переносят протоны (Н+). Взаиморасположение переносчиков в мембране таково, что при транспорте электронов от субстрата к О2 протоны связываются на внутренней стороне мембраны, а освобождаются на внешней. Электрохимический градиент служит движущей силой для процесса регенерации АТР (и других процессов, требующих затраты энергии). обратный переход протонов с наружной стороны мембраны на внутреннюю сопряжён с синтезом АТР АТР-синтетазой. Синтез АТР за счёт энергии транспорта электронов через мембрану называют окислительным фосфорилированием.
Компонентами дыхательной цепи являются:
1. флавопротеины - переносчики водорода; простетические группы – флавинмононуклеотид (FMN) и флавинадениндинуклеотид (FAD).
2. железосерные белки – переносчики электронов; содержат атомы железа, связанные с серой цистеина и неорганической серой (Fe-S-центры)
3. хиноны – липофильные молекулы, способные переносить водород и электроны. По сравнению с другими компонентами содержатся в 10-15-кратном избытке.
4. цитохромы – переносчики электронов; простетическая группа – гем. При переносе электронов эквивалентное им число протонов переходит в раствор. Во всех организмах найден цитохром с; существует также целый ряд других цитохромов.
Компоненты дыхательной цепи переходят попеременно из окисленного состояния в восстановленное и обратно, т.е. ведут себя как типичные окислительно-восстановительные катализаторы. Хиноны осуществляют сбор водорода, поставляемого различными коферментами и простетическими группами дыхательной цепи. На хиноны переносятся электроны с NADH2 и с FADH2 соответствующими дегидрогеназами. Восстановленные хиноны вновь окисляются системой цитохромов. Цитохромы передают электроны кислороду или другому конечному акцептору электронов. Непосредственно с кислородом реагирует терминальная оксидаза -- цитохромоксидаза (цитохром аа3) или цитохром о. На кислород переносятся четыре электрона и каждый из образующихся анионов кислорода реагирует с двумя протонами с образованием воды. Согласно гипотезе Митчелла, дыхательная цепь состоит из чередующихся переносчиков водорода и переносчиков электронов. Расположенных в мембране таким образом, что окисление субстрата приводит к потреблению протонов на внутренней стороне мембраны и освобождению их на наружной стороне. Если цепь образует три петли, то при окислении NADH2 наружу выводится шесть протонов (при окислении FADH2 – четыре) и затем за счёт электрохимического потенциала с помощью АТР-синтетазы синтезируется 3 молекулы АТР из ADP и Pi (при окислении FADH2 – 2 АТР). АТР-синтетаза может работать в обратном направлении, используя АТР для создания протонного потенциала(), т.е. протонный потенциал и АТР могут взаимно превращаться друг в друга. В некоторых случаях дыхание даёт не протонный, а натриевый потенциал (). Соответственно работа в этих случаях может поддерживаться за счёт расхода . Любая живая клетка( в том числе бактериальная) всегда располагает как минимум двумя конвертируемыми формами энергии: водорастворимой (АТР) и связанной с мембраной ( либо). Эти конвертируемые формы энергии могут превращаться одна в другую, поэтому получение хотя бы одной из них за счёт внешних ресурсов достаточно для поддержания жизнедеятельности.
При аэробном дыхании конечным акцептором электронов служит кислород . Однако он может оказывать токсическое действие не только на анаэробов, но и на аэробов. Поэтому у большинства организмов имеются ферменты способные защищать клетку от токсичных продуктов, образующихся из кислорода: супероксиддисмутаза превращает супероксид-радикалы в пероксид водорода, а каталаза и пероксидаза способны восстанавливать пероксид водорода до воды.
Кроме кислорода в качестве конечного акцептора электронов (и водорода) при дыхании могут служить другие соединения. Способность переносить электроны на эти соединения даёт бактериям возможность окислять субстраты без участия молекулярного кислорода и при этом извлекать больше энергии, чем при брожении (рис.3). Такого рода бактерии обладают системой переноса (транспорта) электронов и, как правило, содержат цитохромы. Поскольку транспорт электронов и сопряжённое с ним фосфорилирование осуществляются в анаэробных условиях, то данный процесс носит название анаэробного дыхания, в отличие от аэробного, проходящего в аэробных условиях и с участием кислорода в качестве конечного акцептора электронов.